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Linear analysis and nonlinear numerical simulations of autocatalytic reaction fronts ascending in narrow
vertically unbounded slabs describe the growth, development, and annihilation of fingers in the front, the
dynamics of edge suppression, and a secondary transition to a two-roll state above the onset of convection. The
pattern formation and evolution of the reaction fronts are determined by the horizontal aspect ratioG5b/a and
the dimensionless driving parameterS5dga3/nDC , which involve the gap thicknessa, the slab widthb, the
fractional density differenced between the unreacted and reacted solutions, the gravitational accelerationg, the
kinematic viscosityn, and the catalyst molecular diffusivityDC . The reaction fronts satisfy a chemical
reaction-diffusion equation and two-dimensional Navier-Stokes equations describing the average Poiseuille
velocity in the vertical plane perpendicular to the gap direction. The wavelength of maximum growth rate
reaches a minimum value ata'1 mm. @S1063-651X~96!13109-3#

PACS number~s!: 47.20.Bp, 47.70.Fw, 03.40.Gc, 82.20.Mj

I. INTRODUCTION

Autocatalytic reaction-diffusion fronts@1# in aqueous so-
lution serve as a rich arena for the study of pattern formation
and evolution, combining chemical reaction-diffusion phe-
nomena with hydrodynamic flow@2#. Iodate–arsenous-acid
reaction fronts consume unreacted solution to produce a re-
acted solution of lower mass density. Buoyancy therefore
renders ascending fronts potentially unstable to convection
@2#. A slab with parallel vertical walls separated by a small
gap provides an ideal geometry to investigate pattern forma-
tion in chemical waves. The purpose of this paper is to in-
vestigate the theory of pattern formation and evolution for
ascending autocatalytic reaction fronts in such a geometry.

An autocatalytic front of iodide in iodate–arsenous-acid
solution serves as a unique system because of its simplicity.
The reaction front can be accurately described by the oxida-
tion of iodide by iodate and the reduction of iodine by arse-
nous acid; the iodide is generated autocatalytically at the
front, and diffuses ahead of the front. A simple autocatalytic
reaction-diffusion equation, derived from the chemical
reaction-rate equations and the catalyst diffusion equation,
governs the evolution of the front in the absence of convec-
tion. It successfully describes the one-dimensional propaga-
tion of the front in a vertical capillary tube@3#.

An isothermal hydrodynamic stability theory of convec-
tion near autocatalytic reaction fronts@2# treats the thin re-
action front as a moving surface which consumes unreacted
fluid of uniform mass densityru to produce reacted fluid of
lower uniform densityr r , thereby relegating all chemical
reactions to the surface. The relative strength of buoyancy is
measured by a dimensionless driving parameter~Ref. @4#!,

S5
dga3

nDC
, ~1!

whered5(ru2r r)/r r is the fractional density difference be-
tween unreacted and reacted fluids,g the acceleration of
gravity, a the gap thickness,n the kinematic viscosity, and
DC the molecular diffusivity of the catalyst. In this ‘‘thin-

front’’ approximation, the reaction-diffusion equation re-
duces to a simple ‘‘eikonal’’ relation@5# between the front
velocity and the front curvature. In a reference frame station-
ary with respect to the fluid, the eikonal relation gives the
normal component of velocity of the reaction front as
c5c01DCK, wherec0 is the flat front speed andK is the
front curvature. HereK is measured as positive when the
center of curvature is in the unreacted fluid. This curvature
correction tends to lower peaks and raise valleys in the front
surface, thus flattening the front. For ascending fronts, buoy-
ancy competes with this curvature effect, and tends to desta-
bilize a flat front.

In this paper, we consider a narrow slab that is unbounded
in the vertical directionz, with gapa and widthb.a, and
with no-slip boundaries atx56a/2 and y56b/2. For a
sufficiently small gap, laminar viscous flows are two dimen-
sional, being restricted to the plane parallel to the slab. The
two components of velocity in this plane, which must vanish
at the no-slip walls, have a well-characterized quadratic Poi-
seuille dependence on the coordinatex normal to the walls
@6#. Averaging the Navier-Stokes equations over this coordi-
nate ~Sec. II! yields a set of equations involving the two
components of averaged velocity, which depend ony, z, and
the timet. These two-dimensional equations lend themselves
to linear and nonlinear analyses, and reduce to Darcy’s law
for steady irrotational flow. In Sec. III, based on these two-
dimensional equations and the correspondingly averaged ei-
konal equation, we summarize the results of a linear stability
analysis for the onset of convection for autocatalytic reaction
fronts in a horizontally unbounded slab withb→`, and
compare them with three-dimensional results obtained previ-
ously. We also investigate the effect of the sidewalls at
y56b/2, for finite b. In Sec. IV, we discuss a numerical
simulation of front evolution above the onset of convection
for finite b by coupling the two-dimensional equations with
the reaction-diffusion equation, which is more convenient for
numerical simulation than the eikonal equation. In Sec. V,
we present the results of the numerical simulation, discuss
pattern formation and evolution near the autocatalytic reac-
tion fronts, and draw conclusions.
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II. EQUATIONS OF MOTION FOR A NARROW SLAB

The Navier-Stokes equations for incompressible fluids,

]v

]t
1~v•¹!v5f2

1

r
¹P1n¹2v, ~2!

¹•v50, ~3!

involve the fluid velocityv, the external force per unit vol-
umef, the pressureP, the mass densityr, and the kinematic
viscosityn. Fully three-dimensional analytical solutions ob-
tained previously for the onset of convection for autocata-
lytic reaction fronts in a vertical slab~with b→`, Ref. @6#!
reveal that, whena is small, the magnitude of thex compo-
nentu of the velocity, which is normal to the slab plane, is
much smaller than the magnitudes of they andz components
v andw (uuu'0.005uwu). These solutions also show thatv
andw have parabolic Poiseuille profiles in thex direction
~see Fig. 1! satisfying no-slip boundary conditions. Accord-
ingly, we ignoreu and demand such profiles onv andw by
writing

v~x,y,z,t !5
6

a2 S a
2

4
2x2DV~y,z,t !. ~4!

Here, V5 v̄ ŷ1w̄ẑ is the fluid velocity v averaged over
2a/2<x<a/2. Substituting Eq.~4! into Eqs. ~2! and ~3!
and averaging yield

]V

]t
1
6

5
~V•¹̄!V5 f̄2

1

r
¹̄P̄1n¹̄2V2

12n

a2
V, ~5!

¹̄•V50, ~6!

where ¹̄5(]/]y) ŷ1(]/]z) ẑ, and f̄ and P̄ are averaged
quantities. Equations~5! and ~6! describe the averaged non-
linear two-dimensional fluid motion between two parallel

planes, based on the Poiseuille velocity profile in Eq.~4!.
The last two terms in Eq.~5! come from the average of
n¹2v5n(]2/]x21¹̄2)v.

It is appropriate to give some historical perspective on Eq.
~5!. In the absence of external forces, we can ignore the
acceleration term on the left side to obtain Darcy’s law@7#

V~y,z!52
a2

12rn
¹̄P̄, ~7!

for steady irrotational flows. Darcy’s law can readily be
modify to incorporate external forcesf̄ necessary for the
study of the displacement of one fluid by another in a Hele-
Shaw geometry (a→0) @8#. Replacing the termn¹2v in Eq.
~2! by 212nV/a2, that is, ignoring the¹̄2 term and the
factor 6/5 in Eq.~5!, yields a set of equations used to study
the stability of a binary fluid mixture in the Hele-Shaw ge-
ometry@9#. This replacement reduces the order of the differ-
ential equations, making it impossible to invoke no-slip
boundary conditions aty56b/2. To overcome this prob-
lem, Brinkman@10# suggested that the¹̄2 term be included.
Accordingly replacing the Laplacian in Eq.~2! by
¹25¹̄2212/a2 yields Eq.~5!, except for the factor 6/5. The
¹̄2 term predicts important finite-gap corrections in double
diffusive systems@11#.

At an interface between these two viscous fluids with unit
normaln̂, the fluid velocityv and the normal stressnjTi j for
( i , j5x,y,x) must be continuous@12#. Here the three-
dimensional stress tensorTi j5Pd i j1Ti j

v consists of a diag-
onal component Pd i j and a viscous component
Ti j
v 52m(]v i /]xj1]v j /]xi). Averaging as before yields a

two-dimensional stress tensor T̄i j5 P̄d i j1T̄i j
V

with T̄i j
V52m(]Vi /]xj1]Vj /]xi) for ( i , j5y,z). There-

fore, we demand continuousV and continuousnj T̄i j at the
interface between the two fluids.

The hydrodynamic stability theory of convection near au-
tocatalytic reaction fronts@2# treats the thin reaction front as
a moving surface which consumes unreacted fluid to produce
reacted fluid. By defining a time-dependent reaction-front
height z5h(x,y,t) and a unit vectorn̂ pointing normal to
the front into the unreacted fluid, we can write the normal
front velocity relative to the moving fluid as
c5n̂• ẑ]h/]t2n̂•vuz5h . This involves the normal fluid ve-
locity at the front n̂•vuz5h and the normal front velocity
n̂• ẑ(]h/]t) in the laboratory frame. When the gapa is suf-
ficiently small, both this equation and the eikonal relation,
c5c01DCK, are replaced by the averaged equations, re-
spectively. The no-chemical-flow boundary condition
]h/]x50 at x56a/2 demands vanishing averaged curva-
ture perpendicular to the plane, which therefore makes no
contribution to the eikonal relation. Accordingly,

n̄•S ẑ]h̄
]t

2VU
z5 h̄

D 5c01DCK̄. ~8!

III. ONSET OF CONVECTION
FOR b˜` AND FOR FINITE b

We now summarize the results of a linear stability analy-
sis of autocatalytic reaction fronts in a narrow vertical slab

FIG. 1. Even-parity convective velocity field@6# for qc50.5 vs
horizontal coordinatex perpendicular to a vertical slab. The com-
ponent of the velocity field perpendicular to the slab is represented
by u(x), and the vertical component byw(x), with
uuu'0.005uwu. The dashed curve is the parabolic profile in Eq.~4!
chosen to have the same maximum magnitude asw(x).
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that is unbounded in the vertical direction and in one hori-
zontal direction (b→`). The associated horizontal transla-
tional invariance allows unrestricted perturbation wave-
lengths in this direction. As usual@2#, we employ the
Oberbeck-Boussinesq approximation@13# by neglecting the
small density difference between the reacted and unreacted
fluids except in the large gravity term. Equations~5!, ~6!, and
~8! govern the evolution of the averaged fluid velocity
V(y,z,t) and the averaged reaction front heightz5h̄(y,t).
These equations allow us to apply standard linear stability
techniques@6,2# to study the fully time-dependent equations.
Whereas Ref.@6# discusses three-dimensional solutions for
the marginal state only, we are here able to obtain solutions
of the two-dimensional time-dependent equations. These so-
lutions allow us to study the maximum growth rate, which is
of particular interest experimentally.

This linear stability analysis yields the growth rates for a
perturbation wave numberq and a driving parameterS,

Sq@2q1~k12k2!#22~q21sn/Dc!~k12k2!

3@2q21121s1q~k12k2!#50, ~9!

where k6523V0 /56Aq21121s19V0
2/25. Heres and

q are dimensionless quantities measured in units ofn/a2 and
1/a, respectively. For iodate–arsenous-acid reaction fronts,
V05c0a/n'0.03 for a'1 mm, so 9V0

2/25;3.24
31024!12. Neglecting this term ink6 and simplifying Eq.
~9! yields

Sq22~q21sn/Dc!~q
21121s1qAq21121s!50.

~10!

For the marginal state, the perturbations neither grow or de-
cay with time, so thats50. Equation~10! therefore be-
comes

S52qc~qc
21121qcAqc2112!, ~11!

which relates the marginal wave numberqc to the driving
parameterS. Figure 2 compares this condition with the exact
three-dimensional marginal condition for the onset of con-
vection for autocatalytic reaction fronts in a vertical slab
with arbitrary gapa @6#. These both agree asqc→0 with the
‘‘Hele-Shaw’’ limit S→24qc obtained from Darcy’s law,
agree thatS→4qc

3 asqc→`, and differ by at most 5.2% at
qc'6. In our previous work@6#, we obtained a useful ap-
proximate analytical marginal condition relatingS andqc ,

S52qc~qc
21121qcAqc2118!, ~12!

which agrees with the exact three-dimensional condition to
within 2.5% over the whole range ofS.

For iodate–arsenous-acid reaction fronts,n59.231023

cm2/s andDc52.031025 cm2/s. Solving Eq.~10! numeri-
cally yields the growth rates as a function of the wave
numberq for various values ofS ~see Fig. 3!. As indicated in
Fig. 3, the larger the driving parameterS, the larger the
growth rates for a given perturbation wave numberq. Tak-
ing the derivative of Eq.~10! with respect toq and setting
ds/dq50 yield

sm5
DCqm

2

n F 2~qm
2 1121sm!

121sm2qmAqm2 1121sm

21G , ~13!

S5
4qm~qm

2 1121sm!~qm
2 1121sm1qmAqm2 1121sm!

121sm2qmAqm2 1121sm

.

~14!

The maximum growth ratesm occurs at the perturbation
wave numberqm , which is uniquely determined by the driv-
ing parameterS ~Fig. 2!. Numerical solutions of Eqs.~13!
and ~14! reveal thatsm,231022 for S,300. Accordingly
ignoring sm on the right sides of Eqs.~13! and ~14! yields
the approximate relations

sm5
DCqm

2

n F 2~qm
2 112!

122qmAqm2 112
21G , ~15!

S5
4qm~qm

2 112!~qm
2 1121qmAqm2 112!

122qmAqm2 112
. ~16!

These relations agree with the numerical solutions of Eqs.
~13! and ~14! to within 0.02% for bothsm and S at the
typical value qm51.0, and have the advantage of giving
sm andS directly fromqm .

For the iodate–arsenous-acid reaction fronts, Eq.~1! indi-
cates that the slab gap thicknessa determines the driving

FIG. 2. Convective stability diagram for flat ascending reaction
fronts in a vertical slab with unbounded widthb→`. The three-
dimensional~3D! trace forqc represents the marginal stability ob-
tained by solving the three-dimensional Navier-Stokes equations
@6#, the 2D trace that obtained by the two-dimensional equations~5!
and~6!, and the Hele-Shaw trace that obtained by Darcy’s law, Eq.
~7!. For a particular value of the driving parameterS, the band
0,q,qc of perturbation wave numbers is unstable to convection.
The wave numberqm with the maximum linear growth rate for
givenS is obtained from the two-dimensional equations.
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parameterS, which determines the wave numberqm of maxi-
mum growth rate~Fig. 2!. Thus the maximum growth wave-
lengthlm52pa/qm is determined by the gapa. Solving Eq.
~9! numerically yields Fig. 4, which reveals the existence of
a critical slab gapac . The wavelengthlm decreases to a
minimum value asa increases to the critical valueac , in-
creases witha as a.ac , and approaches the maximum
growth wavelengthlm515.0374(n2/dg)1/3 for a laterally
unbounded system@2# asa→`. The wavelengthlm behaves
quite differently than the cutoff wavelengthlc , which de-

creases monotonically witha, and approaches the cutoff
wavelength lc52p(4nDC /dg)

1/3 for the laterally un-
bounded system asa→` ~see Fig. 3 in Ref.@6#!. Solving Eq.
~9! numerically with finiteV0 yields values ofqm and sm
that agree with Eqs.~13! and~14! to within 0.03% at typical
values ofa50.2, 1, 10, and 100 mm.

Finite widthb eliminates horizontal translational symme-
try and requires rigid boundary conditions at the sidewalls,

Vuy56G/250, ~17!

whereG5b/a, the aspect ratio of the slab. We use the algo-
rithm of Vasques, Edwards, and Wilder@4# to obtain the
marginal condition forSc andG as plotted in Fig. 5~solid
trace!.

Comparing with results forb→` yields a deeper under-
standing of the marginal condition for finiteb in Fig. 5. The
minimum wavelengthlc52pa/qc ~measured in conven-
tional units! necessary for convection decreases with increas-
ing driving parameterS ~Fig. 2!. Since each wavelengthl of
the convection pattern embodies two rolls, a single roll in a
finite-b cell corresponds to the maximum allowable wave-
length l52b for such a cell. Thus,lc52b embodies an
approximate marginal condition for the onset of convection
for finite b. This condition relates the corresponding mar-
ginal aspect ratioG5p/qc to S through Eq.~11!. This rela-
tion underestimates the marginal condition in Fig. 5 by about
10%.

IV. NUMERICAL SIMULATION

The reaction kinetics of a propagating front of iodide in
an iodate–arsenous-acid solution can be accurately described

FIG. 3. Dimensionless linear growth rates vs wave numberq
for S550 ~tracea), 100~traceb), 150~tracec), 200~traced), 250
~trace e), and 300~trace f ). The critical wave numberqc , the
growth rates, and the wave numberqm with maximum growth rate
sm all increase with increasingS. The maximum growth rate is less
than 231022 for S,300. The quantitiesqc andqm are labeled for
S550 ~tracea).

FIG. 4. The wavelengthlm of maximum growth rate vs slab gap
a for the iodate–arsenous-acid system~solid trace!, including the
Hele-Shaw and laterally unbounded limits. The wavelengthlm

reaches its minimum value asa5ac .

FIG. 5. Stability diagram for ascending fronts in a vertical slab
with finite width b. The solid line represents the predicted marginal
state, and the arrow indicates its asymptotic limitSG576.1 for
G→`, which is close to the asymptotic limit 24p for laterally
unbounded slab. The filled circles with error bars represent the mar-
ginal state obtained from our numerical simulations. The front is
flat and convectionless in region I; one convective roll appears in
region II. The open circles with error bars locate the transition from
the one-roll state to a symmetric two-roll state.
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by the oxidation of iodate by iodate and the reduction of
iodine by arsenous acid@3#. The iodide is generated auto-
catalytically at the reaction front and diffuses ahead of the
front, catalyzing the reaction. In the absence of convection,
the coupling of the corresponding chemical reaction rate
equations with the catalyst diffusion equation governs the
spatiotemporal evolution of the iodide concentration and the
propagation speed of the iodide front. The simple autocata-
lytic reaction-diffusion equation describing a one-
dimensional iodide front in an iodate–arsenous-acid reaction
with arsenous acid in stoichiometric excess
~@H3AsO3# 0.3 @IO3

2# 0) has been investigated@3#,

]C

]t
5DC

]2C

]z2
2aC~C2C2!~C2C3!, ~18!

where C5@ I2# denotes the iodide concentration,
C25@ IO3

2#055.031023M the initial iodate concentration,
C352ka /kb521.0331025M , and a5kb@H

1#253.45
3104M22/s. The reaction rate constants areka54.50
3103M23/s and kb53.453108M24/s. Equation~18! re-
solves the reaction front, which was treated previously as
infinitesimally thin using the eikonal equation, Eq.~8!. In-
stead of the time-dependent front heighth̄, Eq. ~18! naturally
introduces the scalar variableC, which avoids the disconti-
nuity at the front and is consequently more accurate and
convenient for numerical simulations. Previous calculations
demonstrate that the two approaches agree for the thin fronts
of interest@14#. Equation~18! has a steady state solution,

C~j!5
C2

11~C2 /C021!ekj, ~19!

where j5z2v0t, k5Aa/2DCC2, and v0
5A2aDC(C2 /22C3), the propagation speed of the front.
For the values given above,v052.9531023 cm/s. The pa-
rameter C0 is the initial iodide concentration satisfying
C0!C2 ~Ref. @3#!.

Including hydrodynamics, the governing equations for the
evolution of the iodide front in iodate–arsenous-acid solution
are

]C

]t
1V•¹̄C5DC¹̄2C2aC~C2C2!~C2C3!, ~20!

r~C!5r~C2!@12b~C2C2!#, ~21!

and Eqs. ~5! and ~6!. Here the quantity b5@r(0)
2r(C2)#/r(C2)C2[d/C2 is the molecular expansion coef-
ficient. The parameter values areg5980 cm/s2 and
d50.8731024. We again adopt the uniform-density ap-
proximation, which ignores density changes except in the
gravity term.

Equation~6! and the pressure term in Eq.~5! can be elimi-
nated by introducing the stream functionc,

Vy5
]c

]z
, Vz52

]c

]y
, ~22!

and the vorticityv,

v5¹̄2c. ~23!

Combining with Eqs.~5!, ~21!, and~20!, we have

]v

]t
5
6

5

]~c,v!

]~y,z!
2bg

]C

]y
1nS ¹̄22

12

a2Dv, ~24!

]C

]t
5

]~c,C!

]~y,z!
1DC¹̄2C2aC~C2C2!~C2C3!, ~25!

where

]~ f 1 , f 2!

]~y,z!
[

] f 1
]y

] f 2
]z

2
] f 1
]z

] f 2
]y

. ~26!

We also require no-slip boundary conditions for the averaged
fluid velocity and no-flow boundary conditions for the
chemical concentration at the sidewalls.

To simulate the evolution of the autocatalytic reaction
fronts in the narrow vertical slab, Eqs.~23!, ~24!, and ~25!
are solved numerically using a rectangular mesh. The mesh
size is varied to address the computational needs of each
choice of S and G. The spatial derivatives are calculated
using central differences; a five-point expansion is used to
approximate the Laplacian. The time evolution is calculated
using the explicit Euler method, and the Poisson equation is
solved using a finite-term expansion method@15#. In this
work, we used both four- and nine-term truncations. For
G,11, the four-term truncation yields propagation speeds
and front shapes that agree with the nine-term truncation.
The results were checked using a cyclic reduction method
@16# to solve the Poisson equation in test cases. The initial
conditions consist of no fluid flow anywhere, together with
small random perturbations in chemical concentration in the
vicinity of a step-function concentration profile at the bottom
of the mesh. The front propagates vertically in this bounded
mesh, and reaches the upper boundary eventually. To simu-
late propagation in a vertically unbounded slab, the front is
first allowed to travel a small distance and then is shifted
back. At that time, unreacted fluid is added near the upper
boundary, and reacted convectionless fluid is discarded near
the lower boundary. This procedure is justified for vertical
boundaries that are far away from the front.

V. NUMERICAL SIMULATION RESULTS
AND DISCUSSION

The simulations employing the reaction-diffusion equa-
tion ~Sec. IV! reveal that when the system is in the no-
convection region~region I in Fig. 5!, the front is flat and
globally stable. Here the perturbations decay, leaving the
steady flat profile described by Eq.~19!, with the front speed
differing from the theory by less than 1%. The filled circles
with error bars in Fig. 5 represent the marginal state for the
onset of convection based on these simulations. The upper
limit of the error bars represents the smallest value ofSG for
which convection was observed, and the lower limit repre-
sents the largest value for which convection was not ob-
served; the filled circles are located at the average of these
two values. The thin-front approximation~Fig. 5, solid trace;
see Sec. III! underestimates these values by about 15%. This
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is also true for the laterally unbounded system@14#, where
the thin-front critical wave numberqc548.74 cm21 exceeds
the finite-front critical wave numberqc546.39 cm21 by 5%,
which corresponds to underestimates of the critical driving
parameterS;qc

23 by 15%.
Just above the marginal state~region II in Fig. 5!, one

convective roll grows in the vicinity of the front and even-
tually saturates, with a corresponding half-wavelength defor-
mation of the formerly flat front@see Fig. 6~a!#. Near mar-

ginal stability, the small values of the growth rates demand
a long time for the roll to grow and to saturate.

Our simulation reveals the existence of a transition from
the steady one-roll state to a steady symmetric two-roll state
~region III in Fig. 5!. The open circles with error bars in Fig.
5 locate the transition. The upper limit of the error bars rep-
resents the smallest value ofSG for which the steady two-
roll state was observed, and the lower limit represents the
largest value for which the steady one-roll state was ob-
served. Just above the transition, for initial conditions con-
sisting of a slightly perturbed flat front, the one-roll state
dominates initially owing to its largest growth rate@see Fig.
6~b!#. After a period of time depending on both the driving
parameterS and the aspect ratioG, the two-roll state
emerges and eventually saturates, indicating that the one-roll
state is nonlinearly unstable to the two-roll state. The larger
the driving parameterS, the faster the two-roll state devel-
ops. The two-roll state corresponds to a full-wavelength de-
formation of the front@Fig. 6~b! at t522/9#.

Convection enhances the propagation speedv of the
fronts. Numerical data reveal that the increase inv depends
on both the driving parameterS and the aspect ratioG ~Fig.
7!. The cusp inv ~at S'80 for G55) reflects the transition
to two rolls discussed above.

Simulations well above the transition to the two-roll state
reveal edge suppression and a tertiary instability that breaks
the symmetry of the two-roll state. These simulations were
carried out forS5463.4 andG510, which correspond to
a51 mm andb510 mm. Figure 5 ensures that the corre-
sponding valueSG54634 greatly exceeds the marginal
valueSG'300 for the transition to the two-roll state. Figure
8 shows the velocity fields for these simulations at four dif-
ferent stages during the development of the front. The small,
random perturbations about the initially flat convectionless
front lead to a first stage consisting of five rolls. This result
follows approximation from the linear stability analysis for
the unbounded system, which predicts a wavelength

FIG. 6. ~a! The steady one-roll state fora50.46 mm and
b52.3 mm. The solid lines are equiconcentration lines in the reac-
tion front. These lines identify the reaction-front region where the
concentration varies significantly, and thereby indicate the thickness
of the reaction front. The simulation employed a grid space of 0.1
mm in the propagation direction and a time step of 1.031023 s, and
was carried out in a mesh 100325 ~only a small portion near the
front is shown here!. ~b! Demonstration of the development from
the one-roll state to the two-roll state fora50.55 mm and
b52.75 mm. The evolution of the front is represented at four
stages.

FIG. 7. The enhancement to the propagation speedV of ascend-
ing fronts due to the onset of convection. The parameterV0 is the
speed of the flat front in the absence of convection. The cusp in
V ~atS'80 for G55) reflects the transition from the one-roll state
to the two-roll state.
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lm52pa/qm53.55 mm for the fastest-growing mode@from
Eq. ~16!#, and a corresponding numberb/(lm /2)'5.6 of
rolls ~since each roll occupies half a wavelength!. In the
second and third stages, the nonlinear interactions between
these five rolls lead to strong downward flows near the side-
walls as rolls are annihilated there. These strong flows tem-
porarily suppress the propagation of the front at the edges of
the front. Such edge suppression has been observed in ex-
periments@17#. The fourth stage shows the final saturated
state consisting of two unsymmetric rolls. This state indi-
cates a tertiary transition from two symmetric rolls to two
unsymmetric rolls above the transition from one to two sym-
metric rolls@see Figs. 5 and 6~b!#. The nature and location of
this transition deserve further study.

Simulations well beyond the marginal condition also re-
veal fingering in the front. Our simulations of the evolution
of fronts for S5463.4 andG53, 5, 10, 14, 17, and 18
clearly demonstrate the formation, annihilation, and develop-
ment of fingers in the fronts~see Fig. 9!, indicating that the
nonlinear dynamics mainly dominates the evolution of the
fronts. The measured typical wavelengthl that emerges ini-
tially is in the range 3.4–4.6 mm. The average wavelength of
4.0 mm differs with the predicted maximum growth wave-
lengthlm53.55 mm by 11%. This difference could be due
to the thin-front approximation.

Experiments designed to test the instability of ascending
reaction fronts in a slab can be carried out by varying any of
the parameters inS5dga3/nDC , notably the density jump
d ~through the various chemical concentrations! or the slab
gapa. Varying the gapa is more effective sinceS is pro-
portional toa3. DecreasingSwill eventually yield a flat front
for any given aspect ratioG. Note that whereas Fig. 5 is
universal, the critical gapa and widthb of the slab depend

on the type of the reaction, the initial chemical concentra-
tions, the fluid viscosity, etc. For example, for the iodate–
arsenous-acid reaction, Eq.~1! yields S5463.4a3 with a
measured in millimeters. ForG56, Fig. 5 yields the critical
condition ScG5105, which yields ac50.34 mm and
b52.04 mm.

In conclusion, our nonlinear numerical simulation of the
evolution of autocatalytic reaction fronts ascending a narrow
vertical slab confirms our linear marginal stability analysis,
and also reveals transitions to two-roll states, edge suppres-
sion, and fingering. An amplitude-equation analysis and
careful experiments might shed further light on the transition
to the two-roll state. The relation between initial perturba-
tions and patterns developed in the fronts is also an interest-
ing subject. Theoretically, we can study the relation through
selected perturbations to start the numerical simulation. Ex-
perimentally, this might be realized by initiating the chemi-
cal reaction with controlled initial perturbations~through
various electrode shapes or by initiating the reaction at se-
lected points!.
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FIG. 8. Edge suppression fora51 mm andb510 mm. The
nonsymmetric two-roll state is evident in the final stage.

FIG. 9. Fingering in the fronts for different aspect ratios
G53, 5, 10, 14, 17, and 18, with a fixed gapa51 mm.
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